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Kurzfassung

Es gibt zahlreiche alltägliche Situationen wie Veranstaltungen, Konzerte, Sehenswür-
digkeiten, Attraktionsparken usw., die die Besucher fordern, sich vor langen Schlangen
einzureihen und Stunden mit warten zu verbringen. Ein Beispiel dafür sind die Disneyland
Resorts. Sie sind alle sehr berühmt und ziehen jeden Tag eine große Anzahl an Touristen
an. Aus diesem Grund, kann das Einreihen vor Attraktionen sehr zeitaufwändig sein -
bis zu einige Stunden. Trotzdem, wird Disneyland von Millionen von Touristen jährlich
besucht [sta]. Um so ein langes Warten zu vermeiden jedoch, müssen die Touristen
einen Plan im Vorhinein machen - wann und in welcher Reihenfolge die gewünschte
Attraktionen zu besuchen. Allerdings, es kann sehr viel Zeit im Anspruch nehmen so
einen Plan zu erstellen. Es ist einerseits schwierig and andererseits kann sogar unange-
nehm sein, da viele Vorbedingungen miteinbezogen sein sollen. Im Hinblick darauf, der
Zweck dieser Arbeit ist eine assistierende Applikation zu entwickeln. Ihre Ziele sind den
Benutzern die Erstellung eines Plans für eine zukünftige Besuch in Tokyo Disneyland
zu ermöglichen und erleichtern. Die Applikation besteht aus zwei Hauptkomponenten.
Erstens, aus einem Optimisierungsalgorithmus, das einen Optimisierungsweg von den
ausgewählten Attraktionen ausrechnet, sowie auch die Visualisierung dieser Wege, um die
Attraktionen leichter zu finden. Dadurch wird die Zeit, die fürs Einreihen und vorlüfiges
Planen verbraucht wird, gespart. So eine Methode wird es für die Touristen leichter
machen, so viele Attraktionen wie möglich in einem einzigen Tag zu besuchen und auf
diese Weise das Maximum von dem Besuch zu erreichen.
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Abstract

There are many situations in our everyday life like events, concerts, landmarks, attraction
parks, etc. that often require from visitors to line-up in front of long queues and thus
spend hours in waiting. An example of that are the Disneyland amusement parks. They
are all very popular and attract a significant number of people every day. For this reason,
the lining-up in front of attractions may cost much time – even up to a couple of hours.
Despite that, the Disneyland parks are visited by millions of people every year [sta].
So to avoid so much waiting they need to make a plan in advance – when and in which
order to visit the wanted attractions. However, to make such a plan, it could be very
time consuming, difficult and even unpleasant, because many prerequisites need to be
considered in advance. Having the main problems and annoyances described, the goal
of this thesis is to create an assisting application. Its purpose is to give the visitors the
possibility to create their own plan for their visit to Tokyo Disneyland. It contains two
main assisting components. Firstly, an optimization algorithm calculating an optimized
route of the chosen attractions as well as a route visualization for an easy attraction
finding. Both will reduce the time for lining-up and pre-planning. Such a technique will
make it easier for visitors to see as many attractions as possible for a single day and thus,
make the most of their visit.
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CHAPTER 1
Introduction

1.1 Overview

This thesis is concentrated in observing and examining the problems regarding waiting
times for different events, landmarks, facilities, etc. The introduction describes the
existing problems in details and explain the motivation behind the searching for solutions
of these problems. Furthermore, the different goals of the project is set and explained,
containing the contributions of the work. In the end there is a section describing the
whole structure of the thesis. This thesis would examine the problem by studying it in
the case of the amusement park Tokyo Disneyland.

1.2 Background

Since the creation of amusement parks that serve as a type of entertainment, they gained
much popularity, especially the Disneyland parks. They are delighted to have thousands
of visitors every day. Despite the enormous size of the parks, the massive attendance
of visitors can lead to unpleasant and long queues in front of the attractions. This will
decrease the enjoyment of the visitors and restrict them in visiting only a few attractions
for one day. This problem concerns the owners of the parks and drives them to look
for solutions. One of the improvements, helping to reduce this problem is the FastPass
tickets system. They allow tourists to visit attractions without having to wait for so long
on the queues. This tickets, though, are limited and are available for only some of the
attractions, which means that the problem with the line-up policy remains. This thesis
will be about Tokyo Disneyland and the algorithms developed will be tested with its
attractions and data.
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1. Introduction

1.3 Motivation and Goals
People who want to ride as many attractions as possible, need to make a plan in advance.
They have to take into consideration in which order they have to visit the attractions so
that they can reduce the waiting times. However, such a plan could be very complex
since it requires many preconditions to be taken into account. One of them is the day of
the visit and the weather – depending on that the amount of visitors varies. Another
important issue is the hours for visiting each attraction. Depending on the time of the
day, the size of the queues in front of each attraction is different. Since the visitors have
no information about that, they will probably not be able to make a good plan, that is
better than a random choice of attractions.

Therefore one of the goals of this project is to develop an optimization algorithm,
calculating an optimal route for a given set of attractions. This algorithm will be based
on data collected by Tokyo Disneyland. The data contains information about the waiting
times for each attraction measured in the previous seven years – from November 2011
to February 2018. The waiting times are stored every 30 minutes. Using this data, the
algorithm will try different permutations of the attractions, and this way calculate an
optimal one. Due to the opening times of Tokyo Disneyland and the calculation time of
the algorithm, the visitors should select not more than a certain number of attractions.
An important aim is to develop such an optimization algorithm that the computation
time is as minimal as possible and the total time for visiting the selected attractions is
also minimal.

Despite knowing an optimal route for visiting the selected attractions, another issue is
the enormous size of the park. A visitor should find the attractions as fast as possible
without getting lost so that he/she can stick to the plan. However, this could be a
very challenging task to achieve with only a static map. The user would need a more
sophisticated visualization that can be interactive and change according to his/her
preferences. The visualization should be a 2D map of the Tokyo Disneyland park
displaying all the paths, buildings of attractions as well as the rest of the facilities.
Nevertheless, there are some difficulties in creating a good visualization, since drawing
the paths between different attractions at the same time could lead to intersections
and overlaps of these paths. Consequently, the second leading goal of the project is to
develop a user-friendly visualization minimizing the intersections of paths. Furthermore,
an animation drawing the paths when selected should be implemented to support a better
orientation and coordination of the visitors.

A user interface will support the user in interacting with the application. At the start
of the application, the user will be able to select the date of visit as well as the set of
the wanted attractions. In the visualization phase, the user will also have the possibility
to interact with the application by selecting different attractions and thus display an
animation of the path leading to the selected attractions.

Initially, the idea was to develop a stand-alone application. Although the screen of the
application would have been bigger and with a higher resolution, the user could only use
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1.4. Contribution

it on a PC or a laptop. However, the application should be used in real time, which is
why it was decided to develop it for smartphones in Android. This way, the application
can support the visitors when they are at Tokyo Disneyland.

1.4 Contribution
The main contribution of this thesis can be split into two major parts:

• The improvement of an already existing optimization algorithm for a possibly
optimal route finding, and

• A dynamic visualization of the founded optimal route in the style of a metro-map
layout – reducing the number of crossings using a greedy algorithm

1.5 Structure of the Thesis
The structure of this thesis is as follows: Chapter 2 gives an overview of existing algorithms
and related work on route optimization and visualization. Chapter 3 is the central part of
the project and explains the methodology of the presented approach. The implementation
including the system specifications, the platform and the external libraries that are used is
described in Chapter 4. Chapter 5 represents the results and evaluation of the developed
algorithms, as well as a description of the limitation and performance of the application.
The final chapter - Chapter 6 - concludes the thesis and discusses possibilities for future
work.
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CHAPTER 2
Related Work

There are several different optimization algorithms, as well as some visualization methods
to implement and develop. This chapter introduces some of the most well-known already
existing algorithms regarding the topic and describes how they will be useful for this
technique. It also gives an overview of how they could be adjusted and modified to solve
the present problems. The chapter is separated into two major parts. The first part will
present different studies and solutions about the line-up policy in attraction parks. The
second part will focus on already existing algorithms and optimization approaches about
visualizing routes that overlap and cross each other.

2.1 Algorithm Optimizing the Path Between Attractions

There have been several various works, focusing in the field of optimizing the route
planning for amusement parks and especially for Tokyo Disneyland. One of the first
works regarding this problem is presented by Shibuya et al. [SOO13]. Their goal is
to minimize the total traveling time for visiting a maximum of 8 attractions. Their
approach is based on the Travelling Salesman Problem (TSP) [SSS17], [Lap92]. TSP is
an algorithm for finding the shortest route from a given list of cities and their pairwise
distances by visiting each one of them only once and returning to the origin city. The
pairwise distances calculation is done by using the Dijkstra Algorithm [Dij59], which
finds the minimum path between any two points/cities. Their algorithm, however, is only
limited to 8 attractions and cannot work in real time when having a bigger number of
attractions. This is because the TSP is an NP-hard problem [Bru13]. With a growing
number of cities, the time for calculation increases factorially.

A more sophisticated approach is presented by Ohwada et al. [OOK13]. Their algorithm
is based on the algorithm of Shibuya et al. [SOO13] However, they use a branch and
bound method to restrict the possible routes [MSJ16]. They add a further variable
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identifying if there is a path between two attractions or not. Equation 2.1 shows the
different components that are used to minimize the total time required.

∑
(i,j)∈I

(Mij + Wit + Pi)Xij → min (2.1)

I describes a set of attractions, while T stays for a set of time zones. The Mij in Equation
2.1 represents the transit time from one attraction to the other, where i ∈ I and j ∈ I.
The waiting time of attraction i ∈ I at time t ∈ T is described by Wit. Pi represents the
duration time of attraction i ∈ I. Xij accepts only binary values - 0 and 1 and represents
the branching of the presented algorithm. It defines if there is a path between any two
attractions, where 1 stays for: "There is a path", and 0 means: "There is no path."

Ohwada et al. have developed three different algorithms each one focusing on a different
aspect of finding an optimal route. The first algorithm is called an NT algorithm and
calculates the optimal route without using the Fastpass system in Tokyo Disneyland.
Fastpass gives the visitors an entry priority for riding attractions by paying additionally
[GHMP13]. The second algorithm is more complicated and includes the usage of Fast-
pass Tickets for the attractions that use that system. The third algorithm takes into
consideration aspects such as relaxation time, regarding the fact that the visitors should
not visit two or more too thrilling and exciting attractions in a row.

The algorithm in this bachelor thesis will be based on the NT algorithm, which can be
seen in Figure 2.1. The algorithm goes through all possible permutations of the given
set of attractions if there is a path, finds the path with minimal total time and stores the
order of attractions as a result.

2.2 Minimization of Path Crossings and Overlaps

Nowadays the visualization and representation of different paths and routes are essential
for many navigational applications. However, visualizing paths in a way that is most
clear and easy to follow, can be very challenging. Many factors influence the layout of
the visualization. One of the main problems are the intersections and overlaps that may
occur if several of the different paths that are displayed have common edges or nodes.
The crossings and overlaps of lines should be reduced to a minimum. This problem is a
very well-known problem when drawing a graph and has been extensively studied in the
graph drawing literature.

One of the most common fields in which this problem occurs is when drawing a metro
map layout [HMdN04]. The problem is defined as the metro-line crossing minimization
problem (MLCM) [BNUW07], [BKPS08]. The metro map is represented as an undirected
embedded graph G = (V, E), where G represents the underlying network. V stays for
the set of the different metro stations and E refers to the railway lines connecting these
stations. Furthermore, there are paths of G which are referred to as lines and are
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2.2. Minimization of Path Crossings and Overlaps

Figure 2.1: NT algorithm by Ohwada et al. [OOK13] computing an optimal path for a
set of attractions using branch and bound.

represented as a set L = {l1, l2, ..., lk}. Each one of these lines li is represented by a
sequence of edges e1 = (v0, v1), ..., ed = (vd−1, vd) of G. The first node v0 and the last
node vd represent the start and end stations of the metro line and are called terminals.
Many different metro lines can visit the same edges and nodes. The MLMC problem
aims to draw the different lines in a way that the number of intersections and overlaps
among the layout is minimized.

Hong et al. [HMdN04] describe the metro map layout problem in their work and present
a method to produce a good layout of the metro map automatically. They define a
good layout of the metro map, which has specific criteria. In a good layout of a metro
map, each line has to be drawn as straight as possible, and the paths should be drawn
horizontally or vertically, but some of them could be at 45 degrees. Furthermore, each
of the lines should have a unique color and there should not be any edge crossings

7
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and overlapping of labels. They try five different layout methods by using a variety of
combinations of spring algorithms [EL00]. Spring algorithms are tools that can be very
helpful for visualizing undirected graphs. Applying them is useful to display symmetric
properties of graphs.

Another solution to the problem is described in the paper by Martin Nöllenburg [Nöl10].
He develops an improved algorithm for the MLMC problem which has a running time
of O(|L|2 · |V |), where L is the set of paths (or lines) that cover G and V is the set of
nodes (metro stations).

A further interesting approach for automatic drawing of a metro map layout is described
by Stott et al. [SRMOW11]. They use a multicriteria optimization in order to achieve
that. They use a weighted sum of a fitness value for the layout of the map that depends
on some different metrics. Stott et al. apply different clustering techniques to the map,
such as a hill climbing optimizer, which helps to produce a good layout of the metro map.

8



CHAPTER 3
Methodology

This chapter presents the different methods and algorithms, which have been developed
to solve the problem for Tokyo Disneyland. It involves the creation of a road network
for the paths, different methods, data structures and approaches for the optimization
algorithms and their visualization as well as a description of the user interface and the
interaction with the application. The application name is "OptiRoute".

3.1 Preliminaries
To start with, several preliminaries and assumptions need to be taken into consideration
in advance when developing the application. Their purpose is to reduce complexity and
lay the foundations of the different algorithms.

These assumptions are:

1. The visitor’s main goal is to visit as many attractions as possible for one day
without counting time for relaxation as in the paper of Ohwada et al. [OOK13].
The idea is to make the maximum use of the stay in Tokyo Disneyland.

2. The visitor will always start and end his journey at the entrance of the park.

3. The visitor visits each attraction only once, without repeating attractions several
times. For the route optimization algorithm, this means that each node should be
visited exactly only once.

4. All the attractions in Tokyo Disneyland are open regardless of the date of visit
specified by the user.

5. It will be taken for granted that the working time of the park is always from 8 a.m.
to 10 p.m. and that all attractions are opened during this interval. This means
that the visitors have a maximum of around 14 hours to spend in the park.

9



3. Methodology

6. The average walking speed needed for the calculation of the time for transportation
between attractions also has to be predefined and fixed. A good choice is 3km/h
since it is preferable that the people are not too much in a hurry when walking
from one to the other attraction.

7. The visitors will always start their tour through the attractions at the same time
in the morning (for example when the attractions park opens or at a fixed time
such as 8:15 o’clock).

8. The Fastpass Tickets system of Tokyo Disneyland, allowing the visitors to visit
attractions with a minimum waiting, would not be taken into consideration for the
development of the optimization algorithm.

9. Some of the attractions in Tokyo Disneyland have no specified duration time. For
these attractions, an average duration time of 10 minutes is taken.

10. The visitor visits each attraction only once, without repeating attractions several
times. For the optimization algorithm of the path order, this means that each node
should be visited only once.

3.2 Overview of the Present Approach

Figure 3.1 gives an overview of the workflow of OptiRoute and all major and essential
steps that occur while interacting with it. Initially, there are two views requiring input
information from the user, which is needed for the subsequent calculations. These two
views can be seen in Figure 3.1 in the field called "User Input Parameters". The user
needs to select the date of visit as well as the desired attractions to visit. The desired
attractions can be selected in any order since this does not influence the final result.
This information is then used for calculating the optimization algorithm responsible for
finding an optimal route for visiting the selected attractions. The resulted order of the
attractions is then passed on to the next algorithm which purpose is to calculate the
offset of paths and reduce overlaps. Finally, the computed information is used to give a
visual representation of the calculated data in the previous steps.

3.3 Building A Road Network and Pairwise Shortest
Paths

This section is fundamental for both: the optimization of the routes as well as the
generation of the road network and its visualization. Generation of road network means
the creation of a single connected graph on the map containing all the coordinates of the
paths between attractions, as well as the storage of various map data, needed for further
calculations.

10



3.3. Building A Road Network and Pairwise Shortest Paths

Figure 3.1: The whole workflow of the Tokyo Disneyland Application.
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3. Methodology

3.3.1 Routes as a Single Connected Graph

The routes connecting the different attractions need to be represented as a single connected
graph in order to be able to calculate the pairwise shortest paths with the Dijkstra
Algorithm afterward. The data obtained from OpenStreetMap contains only single nodes
or a group of nodes representing coordinates in the territory of Tokyo Disneyland. Each
coordinate has a tag consisting of key and value that clarifies what part of the map it
represents. This could be a building, a footway, a way for pedestrians, a bridge, a garden,
etc. Some of the different keys and the values they can have are represented in Table
3.1. For the creation of a single connected graph of the paths only coordinates with the
key = “highway” and value = “footway” or “pedestrian” should be extracted. As already
mentioned the nodes only contain a group of coordinates, which means that the start and
the end coordinate of different groups might be identical and need to be taken only once.

Key Value
amenity "restaurant" ,"theater", "cafe", "ice cream", "fast food", "toilets", "parking"
shop "gift", "toys", "jewelry", "photo", "perfumery", "clothes"

highway "pedestrian", "footway", "service"
barrier "gate", "fence", "retaining wall", "hedge", "wall"
railway "switch", "narrow gauge", "monorail", "disused"
building "yes", "roof", "retail"
landuse "forest", "construction"
natural "tree", "water"
leisure "garden"

Table 3.1: The different keys and values that each coordinate (node) has in the .osm file
of Tokyo Disneyland

For the representation as a graph, the data structure adjacency list was used. In this
case, the adjacency list to adjacency matrix is preferred, because in an adjacency matrix,
regardless of the number of edges, for each pair it stores if there is an edge or not. The
complexity of an adjacency matrix is O(n2) and of an adjacency list is O(n + m), where
n stands for the number of nodes and m for the number of edges. Since most of the
nodes (coordinates) are connected to only two edges and the graph is sparse, using an
adjacency list is the better choice [gra].

3.3.2 Calculation and Storage of Paths

The next important issue is the computation of the minimum pairwise distances between
any pair of two attractions. The very first step is to store the coordinates of each
attraction, which were taken manually from the official site of OpenStreetMap [ope].
Except for the coordinates of attractions, there is one further point that has to be stored
– the coordinates of the entrance of Tokyo Disneyland. The entrance is needed for both:
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3.4. Route Optimization

the route optimization algorithm and the visualization, since all visitors start and end
their trip there.

Unfortunately, the exact entry of each attraction cannot be obtained from the map. That
is why approximate coordinates of the paths that are most close to the attraction itself
were taken from the map. These coordinates exactly, however, may not have been stored
in the adjacency list, because they could differ since they are taken manually. For this
reason, it is essential to determine, which are the coordinates stored in the adjacency list
that are closest to the coordinates from the paths that represent the attractions. The
calculation is done using the shortest distance between the coordinate representing an
attraction and all coordinates from the adjacency list. It is important to mention that all
path coordinates lay on corners – this means only on edges different from 180◦. However,
some special cases again need to be processed manually. These are the cases when the
attraction is positioned between two points. This means that for these attractions an
additional point should be stored manually.

After having determined the path positions of the attractions on the map, the next
step is to calculate the minimum pairwise distances. This is done using the Dijkstra
Algorithm. The algorithm is executed for every single attraction, including the entrance,
and it calculates its smallest distances to all other attractions. As a result, in the end,
the minimum path between any two attractions is stored twice: for both directions. This
makes further calculations easier since there is no need to reverse the direction of the
coordinates each time the attractions are visited in the opposite order.

3.3.3 Storage of Pairwise Distances

Finally, the pairwise distances between attractions have to be computed. Using the
stored minimum paths, each coordinate is being traversed and the distance between two
consecutive coordinates calculated and summed up.

3.4 Route Optimization
This optimization algorithm is one of the two main contributions of this bachelor thesis.
Its main purpose is to calculate the most efficient route between the number of selected
attractions, reducing the total time needed for visiting them. The result is a specific
order in which the given attractions have to be visited in order to save time. Crucial
information for calculating this algorithm are the waiting times, the transportation times
and the duration of the attractions.

3.4.1 Preliminary Calculations Using External Data

Waiting Times
The waiting times are obtained from a website, storing data about the number of visitors
on each day of the year [wai]. The data contains the following information - for each
day of the previous years and on every thirty minutes the average waiting time for each
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3. Methodology

Figure 3.2: The structure of the waiting times data.

attraction is stored. This information could be used to predict the future waiting times
for a specific attraction on a specific day. This is done by taking the average waiting
times from the previous years. It is possible that on a specific year and day one of the
attractions was closed. However, since it was taken for granted that all attractions are
opened on the date specified by the user, the average waiting times are simply calculated
for the rest of the years. The structure of the data can be seen in Figure 3.2. The
representation is very illegible and hard to read, which makes the OptiRoute application
a faster and better solution for calculating the waiting times.

Transportation Times
The transportation time from one attraction to the other depends on two things – the
average walking speed of the visitor and the distance between the attractions. The
average walking speed of the user is as already settled in the assumptions - 3km/h. The
distance between the attractions can be obtained from the data that was calculated and
stored as described in the section about the pairwise distances. Using this information
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the transportation time is calculated in minutes. The time is always rounded into the
positive direction, to be sure that the user will get to the desired attraction on time.

Duration of the Attractions
Each attraction at Tokyo Disneyland has a specific duration time. The information about
that can be obtained directly from the official site of Tokyo Disneyland [off]. However,
there are several attractions that do not have a duration time, due to the fact that the
user can spend there as much time as he/she wants. For such attractions, an average
duration time of 10 minutes was taken as already described in the preliminary section.
This is because it is assumed that the visitor would like to visit as many attractions
as possible and not waste much time in only a single attraction. So since most of the
attractions have a duration of 5 to 15 minutes, 10 minutes is a good choice.

These three things determine how long it would take the user to visit the selected
attractions and are the values needed for Equation 2.1. To represent the walking paths of
Tokyo Disneyland as a graph, the attractions will be represented as nodes and the routes
will be represented as edges. The weight of each edge would be the summation of the three
described values. This problem seems similar to the known TSP as already described
in the 2 chapter, but it is more complicated. The duration of the attractions and the
transportation time are constant values, which regardless of the order of attractions,
never change. The waiting times, however, vary not only on different days but every
thirty minutes. This means, the weight of a single edge changes every time the order is
changed, even when the order of only two attractions is being swapped. The TSP has
a constant weight of the edges. Since the TSP is an NP-hard problem, this problem is
also an NP-hard problem. To find the most optimal route, all different permutations
of the chosen attractions need to be traversed. This is the brute-force search approach,
where every possible solution is tested. For a small number of attractions the algorithm
will still run fast, but with a growing number, the time needed for calculation grows
factorially. This means that for a bigger number of attractions the brute-force search
may last up to days, months, years, etc. Therefore a trade-off between the computation
time and the accuracy of the final result should be one of the aims of this optimization
algorithm. To achieve that, a couple of constraints need to be added. Their purpose is to
exclude some of the possible permutations and thus reduce the computation time. This
algorithm will be described in the following sections.

3.4.2 Constraints Regarding the Reachable Attractions

As was mentioned in Chapter 2, Ohwada et al. [OOK13] constraint their optimization
algorithm using a branch and bound method. They limit the possible paths, by restricting
which pairwise attractions are reachable from the others and which are not. In their
paper, however, there is not a detailed description of which attractions they assume as
not reachable. Consequently, it was decided that it is most logically to set those paths
as not reachable that are longer than a certain distance. This way, the optimization
algorithm will have to calculate fewer permutations and work faster. It was assumed
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that this would, nevertheless, still lead to a satisfying result, since the visitor would not
have to walk for long between attractions and save time from that.

After a couple of tests with different attractions and different constraining distances,
this method proved to be useless. Approximately half of the combinations of different
attractions turned to have no result or to need too much time for computation. The
reason lies in the fact that, if among the chosen attractions there is a single attraction
that is too far away from all the others, it would never be reachable and the algorithm
will not return a result. On the other hand, if most of the chosen attractions are too
close to each other, the provided constraint would not be useful in this case, and the
algorithm will still traverse all permutations.

Based on that findings a new approach has to be developed, that overwhelms the
weaknesses and drawbacks of the previously described one. Instead of using a constant
value for the distance, it was decided that the best procedure is the algorithm to work
dynamically. This means that all calculations will be done in real-time and will depend on
the input data. This way, calculating which attractions are reachable and which not will
depend on the user’s choice of attractions. However, before describing the approach in
details, two essential prerequisites need to be set. First of all, the optimization algorithm
without these constraints had to be tested, to figure out what is the maximum number of
attractions that are still computed in a reasonable time. A reasonable time is assumed to
be less than 10 seconds since the purpose of this technique is that it will be computed in
real time, so the user should not have to wait long for computation. The results showed
that the maximum possible attractions within this time are 9, assuming that for all the
rest algorithms and calculations a time of 3-8 seconds also will be needed. Table 5.1
represents the computational time needed for the different number of attractions. A more
detailed description of that follows in the 5 chapter. As next, it had to be determined
what is the maximum number of attractions that the user can choose to visit for one day.
It was discovered that with already 15 attractions on very busy days the total time for
visiting all of may exceeds the opening times of the park. With the assumption that the
new algorithm will reduce that time, 15 attractions are chosen as an upper bound. For
an experiment about that refer to Table 5.3.

3.4.3 Dynamic Calculation of Pairwise Reachable Attractions

Knowing the number of attractions for which the optimization has to be executed, as
next, it had to be determined which attractions should be set as not reachable. Due to
the fact that for up to 9 attractions the brute-force search is used and all permutations are
calculated, representing that as a graph, would mean that all attractions will be connected
to all others without containing loops. This results in an undirected complete graph
G = (V, E), where V refers to the vertices (attractions) of the graph and E represents
the set of edges (paths) between these vertices. In the following explanations to a vertex
would be referred with both words - vertex and attraction, when talking about the graph
and to an edge with the words edge and path. Since this is a complete graph, it will be
denoted by Kn, where n stays for the number of vertices. Such a graph has n · (n− 1)
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directed edges and n·(n−1)
2 undirected edges. For n = 9 this would mean 9 · 8 = 72

directed edges or 36 undirected edges in total. To achieve the same computational time
for a greater number of attractions, some of the edges need to be removed and thus
reduce the number of permutations. In these 36 edges, the two edges connecting the
entrance with the starting and ending attraction are not included. Each attraction is
reachable from the entrance. The entrance is also reachable from each attraction since it
serves as a starting and ending point. Table 3.2 gives an overview of the edges that need
to be removed according to the number of attractions.

Attractions Directed Edges Undirected Edges Edges to Remove
n = 9 9 · 8 = 72 36 0
n = 10 10 · 9 = 90 45 45 - 36 = 9
n = 11 11 · 10 = 110 55 55 - 36 = 19
n = 12 12 · 11 = 132 66 66 - 36 = 30
n = 13 13 · 12 = 156 78 78 - 36 = 42
n = 14 14 · 13 = 182 91 91 - 38 = 53
n = 15 15 · 14 = 210 105 105 - 40 = 65

Table 3.2: Edges to be removed according to the number of attractions. The numbers in
bold indicate the number of undirected edges that have to be removed. The numbers
marked in red are special cases for |V | = 14 and |V | = 15 attractions where adding 2
more edges for |V | = 14 and 4 for |V | = 15 does not make a significant change in the
computation times.

The algorithm for removing edges works the following way – all the edges should be sorted
in descending order according to their distance. The algorithm first removes the edges
(paths) with the longest distance, until all necessary edges are removed, so that in the
end there are only 36 undirected edges left. However, this approach could lead to several
problems, such as removing all the paths that connect a particular attraction. Moreover,
the fact that each attraction should be visited only once makes the algorithm even more
complicated. Therefore, there is another important condition, which should resemble
these problems. It is that for |V | = 10, 11, 12, 13 attractions (without the entrance) each
vertex should have a deg(vi) = 2, which means it should contain at least 2 edges incident
to it. This condition makes sure that if any attractions are isolated and are too far away
from all the others, they still would be reachable by being able to get in and get out of
them [con]. In addition, the fact that the entrance has a path to every attraction also
helps in some cases. As an illustration, there is the case when the graph contains more
than one cycle consisting of only |V | = 3 vertices. Two of the vertices have a deg(v) = 2
and are connected to each other and to the third one. Such a case can be seen on Figure
3.3.

The worst case that can occur with 13 attractions is represented in Figure 3.4. There
are |V | = 5 vertices that have a deg(v) = 2 and are all connected to the same 2 other
vertices. The previously described conditions cannot solve this graph since there is no
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Figure 3.3: A graph with two cycles con-
sisting of 3 nodes. In each cycle two of
the nodes have only two edges and are con-
nected to each other and to the third node.
Using the entrance it is possible to traverse
all nodes visiting each one of them only
once.

Figure 3.4: A graph containing the worst
case for |V | = 13 attractions. No path
exists that can traverse all nodes without
visiting at least one of the nodes twice.

possibility to traverse all the attractions without visiting some of them twice. However,
practically this case should never happen with the graph structure of Tokyo Disneyland.
The attractions in Tokyo Disneyland are separated in several different groups according
to their main topic and characteristics as it can be seen in Figure 3.5. The attractions in
a single group lie dense to each other, while the different groups have a longer distance
in-between. The suggested worst case contains five attractions (with numbers - 7, 8, 9,
10, 1) that only have two edges and all of them are connected to the same two other
attractions (11 and 12). With a total number of |V | = 13 attractions even if seven
attractions of the same group are taken and the rest 5 are from different groups, when
removing edges it would be implausible to have all of them connected with the same two
other attractions. Testing with 50,000 randomly chosen sets of 10 to 13 attractions was
carried out. The results of the tests showed that for all of the sets the algorithm found
a path, which means it did not crash. This algorithm for removing the edges is called
the Edge Removal Algorithm and the pseudocode for it can be seen on Algorithm 3.1.
Nevertheless, there is another algorithm called the Edge Replacement Algorithm that is
responsible for resolving the problems caused by some of the existing cycles. If there
is even a single case that can lead to an unsolvable graph, it will adjust the graph so
that it is solvable. The following paragraphs should describe that additional algorithm in
details.

As Table 3.2 represents, with a growing number of attractions, the number of edges
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Figure 3.5: The red circles indicate positions on the paths that are closest to the respective
attraction. The black circles show how are these attractions grouped according to their
characteristics and types, but also the distance between them.

that need to be removed also grows and thus there are less possible permutations to be
traversed in total. For |V | = 14 and |V | = 15 attractions (without entrance) the condition
of having at least a deg(vi) = 2 is no longer eligible. This would restrict the permutations
too much, because in the worst case there could be more than five attractions with only
two edges. Furthermore, having only two edges for so many nodes could lead to a lot of
unsolvable graphs. For this reason, the condition for |V | = 14 and |V | = 15 attractions
is adjusted and each vertex should have at least a deg(vi) = 3. However, since almost
two-thirds of the available edges have to be removed, the possible permutations decrease
drastically, and the algorithm works even faster than with fewer attractions. To increase
accuracy and to sustain similar to the previous times needed for computation it was
tested that for |V | = 14 attractions except the |E| = 36 edges, two additional edges
could be left without removing them. This means, in the end |E| = 38 edges can be used
for the permutations of |V | = 14 attractions. The path is still calculated in less than
10 seconds, but the chance of getting a better result in the end is increased. The same
applies for |V | = 15 attractions, however, in this case even |E| = 40 edges can be left
and the time is still within 10 seconds. These two special cases are marked with red
numbers in the table. However, these two special cases are only tested and work with
Tokyo Disneyland. Therefore, for other amusement parks, there is no certainty that the
same number of edges would lead to the expected results. This depends mainly on the
positions of the attractions and the structure of the graph, so for another park, these
values have to be tested and if needed adjusted.
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Algorithm 3.1: Edge Removal Algorithm
Input : An undirected complete Graph G = (V, E), where V is the set of

vertices(attractions) and E is the set of edges(paths) that connect the
vertices. Furthermore, l is a list containing all edges from E in
descending order.

Output : A modified undirected Graph G = (V1, E1), where V1 = V and
|E1| = finalEdges and the list l with the remaining edges

1 minDegree← 2;
2 finalEdges← 36;
3 if |V| = 14 then
4 minDegree← 3;
5 finalEdges← 38;
6 end
7 if |V| = 15 then
8 minDegree← 3;
9 finalEdges← 40;

10 end
11 while l.size() > finalEdges do
12 for all edges vi → vj, i 6= j in l do
13 if deg(vi) > minDegree and deg(vj) > minDegree then
14 l.remove({vi, vj});
15 l.remove({vj , vi});
16 else
17 Continue with the next edge in l;
18 end
19 end
20 end

This Edge Removal Algorithm is used to restrict the total possible permutations for
a higher number of attractions (more than 9 and less than 16). It defines which two
attractions are reachable and which not. This algorithm is used as a branch and bound
in the NT algorithm, described by Ohwada et al. [OOK13] and that can be seen in
Figure 2.1. The NT algorithm together with the Edge Removal Algorithm was tested
with around 10,000 randomly chosen combinations of 14 and 15 attractions, which took
a couple of hours to compute. About 90% of the tested combinations returned a result.
The rest 10% had no solution. The reason for that lies in the fact that even with
these conditions for the branch and bound, some special cases need to be taken into
consideration and be further resolved. Therefore, there is another algorithm called Edge
Replacement Algorithm as already mentioned, which is responsible for that. It checks
first if the graph is a single connected component and if a path to each vertex exists. In
case the graph is separated into two or more components, these components should be
connected to each other by adding a further edge so that in the end there is a single
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connected component. However, the testing showed that this case could happen very
rarely and there is another reason for not finding a solution.

In some of the cases, there were cycles in the graph from which it was not possible to get
out without visiting at least one of the nodes twice. One such case can be seen on Figure
3.6a. There are two of the cycles, whose vertices are marked in yellow. Each one of these
vertices has the minimum number of edges - deg(v) = 3. To get in or out of both of the
cycles and visit the other vertices the attraction "Swiss", which is marked in red, must
be visited. Nonetheless, this is not possible without traversing "Swiss" twice. This would
break the rule that was set in the beginning - not visiting the same attraction twice.

The idea to solve this problem is to replace some of the edges with others. What can
be established from the graph is that the vertices "Swiss" and "Peter" contain the most
edges. Both of them have a deg(v) = 8. However, "Swiss" is adjacent to more vertices
with deg(v) = 3 edges than "Peter", where exactly the problem lies. Other problematic
cases that had no solution were examined too, and it was figured out that in all of
them the attraction with the highest degree is connected to the problematic cycles. So
the algorithm chooses the attraction with the most paths that are connected to most
other attractions with only three edges. So the edge connecting that attraction to the
attractions with three paths should be removed, and another one should be added. It has
been concluded, however, that if only one edge is replaced, some of the graphs would still
have no solution. This is why it was found out that replacing two of the edges is enough
to find a solution. Hence, from the attractions adjacent to the attraction with the highest
degree, the algorithm searches for two attractions having paths with a maximum distance.
Each one of the two attractions should be "disconnected" from the attraction with the
highest degree and find two other attractions to connect to. The other two attractions,
however, must not be connected to the first two and also not be part of the two cycles.
Moreover, both of them should be different from each other and have a shorter distance
compared to the other edges in the graph. Figure 3.6b represents a possible replacement
of two of the edges connected to "Swiss". The blue ones are the old edges and the green
ones are the new edges. This replacement of the edges transforms the graph in a way
that all attractions can be visited only once in a single route returning to the original
point: the entrance. One of the possible routes of the new graph can be seen in Figure
3.6c.

The cycles in the graph should not be removed since they are crucial for the permutations
and finding an optimal route. This is why the algorithm should replace some of the
edges in such a way that the problematic cycles no longer exist. The presented Edge
Replacement Algorithm is called in a loop, so that it would be executed as many times as
needed to get a solution in case after the first execution it is still not possible to find a
route. The algorithm proved to be very efficient and always finds a route despite the
problematic cases. It usually uses a single loop to find a solution and in extremely rare
cases: two loops.

The NT algorithm together with the Edge Removal Algorithm and the Edge Replacement
Algorithm is called the Route Optimization Algorithm. The Route Optimization Algorithm
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was tested with more than 150,000 different combinations of attractions with sets of 15
attractions. That test aimed to verify that no matter the set of attractions, the algorithm
will always find a solution. The testing took around a day and a half to complete and the
algorithm found a solution for all the tested combinations. Around 600 times in total
out of 10,000 the Edge Replacement Algorithm was used to replace the edges and resolve
the cycle problems in the graphs. The pseudocode of the Edge Replacement Algorithm
can be seen on 3.2.

(a) Two cycles consisting of 3 nodes and all
connected to the same node.

(b) Replacing two of the problematic edges with
new edges.

(c) A possible path after replacing the edges.

Figure 3.6: Rearranging edges to resolve the cycle and make it possible to traverse all
attractions by visiting each one of them only once.
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Algorithm 3.2: Edge Replacement Algorithm
Input : An undirected Graph G = (V, E), where V is the set of

vertices(attractions) and E is the set of edges(paths) that connect the
vertices. l is a list, containing all edges from E

Output : A modified undirected Graph G = (V1, E1), where V1 = V and
E1 = newEdges

1 changeTwoEdges← 2;
2 while checkConnectivity() of G with BFS is false do
3 l.remove({vi, vj} ∈ E with the longest distance);
4 l.add({vi, vj} /∈ E that connects vertices from two of the components and has

shortest distance);
5 end
6 vmaxDeg ← a vertex with max degree that is adjacent to the most vertices that

have degree 3;
7 ldeg3 ← stores all vertices with degree 3 that are adjacent to the vertex with max

degree;
8 while changeTwoEdges > 0 do
9 for vi from ldeg3 do

10 if edge {vmaxDeg, vi} is longest then
11 vtoChange ← vi ;
12 else
13 continue with next vi;
14 end
15 end
16 for every vertex vj not adjacent to vtoChange do
17 if vj 6= vmaxDeg and vj 6= vifromldeg3 then
18 if deg(vj) is smallest and vj 6= to previous vnew then
19 vnew ← vj

20 end
21 else
22 continue with next vj ;
23 end
24 end
25 l.remove({vmaxDeg, vtoChange} ∈ E);
26 l.add({vtoChange, vnew} /∈ E);
27 changeTwoEdges−−;
28 end
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3.5 Visualization and Route Intersection Minimization
This section describes the second contribution of this thesis. It involves the visualization
of the results obtained from the calculation of the route optimization algorithm. The
whole route should be displayed in a way that is most convenient for the visitors and to
support their faster coordination. This includes offsetting paths and avoiding overlaps of
the different paths for a better visual representation.

3.5.1 Paths Offset and Intersection Minimization

The main part of the visualization is the paths themselves. Initially, all paths were drawn
on the map taking the original coordinates from the minimum pairwise paths as described
in one of the previous sections. However, this leads to a very illegible map, because some
parts of the path are traversed more than once for the different attractions. This is the
case especially for a bigger number of attractions. Such overlaps can lead to confusions,
since the user may not know how many and which paths exactly go through a particular
part of the path. Figure 3.7 shows how does the paths’ visualization look like without
offsetting the overlapping parts and without minimizing intersections. To overcome this
problem, the paths need to be offset on the places where more than one path passes
through. Furthermore, to preserve the map clear and easily readable, the paths should
be offset in such a way that the intersections and overlaps with the other paths are held
as minimal as possible.

Paths Offset
Before describing the Route Intersection Minimization Algorithm, it is important to
explain the algorithm responsible for the paths’ offset. An offset or parallel line means a
displacement of every point/coordinate of the original line by a specific amount. Each
path consists of several different coordinates that are connected to each other and thus
form multiple lines. This is called a polyline. Each coordinate of the polyline consists
of the values latitude and longitude, determining the position of the coordinate on
the Earth. What has to be achieved, is to be able to offset these polylines with a
certain distance to the left or the right side of their original position. The well-known
vectors from the Mathematics and the different operations with them can be helpful for
accomplishing this task. Every two consecutive coordinates from the polyline from a
straight line and can be represented as a vector. The direction in which these coordinates
are visited will determine the direction of the vector. After building a vector from the
two coordinates, the normal vector could be easily calculated. The normal vector is the
vector perpendicular to the original vector, and if its sign is changed, the normal vector
will point in the opposite direction. However, after calculating the normal vector, it
has a certain length. Since all computations are done with real coordinates, the length
of the vector should be adjusted so that it fits the scale of the map. To test different
options and find the most appropriate length, the vector should have in the beginning
information only about its direction. To achieve that, the vector should be normalized.
Such a vector has a length of 1.
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Figure 3.7: Visualization of paths without offset and intersection minimization.

As next it had to be determined which value to choose so that when multiplied with
the normalized normal vector, the offset would be small, but still visible. Working with
coordinates, however, makes things more difficult, because instead of having integers, in
this case, the rational numbers come in hand. Not all rational numbers can be accurately
represented with programming languages, which is why some numerical mistakes may
occur when doing calculations with them. Due to the level of complexity when working
with coordinates to find an appropriate value, various options had to be tested. The
testing showed that to multiply the perpendicular vector with the value 0.00001 and
to add the result to the coordinates of the original vector brings the best results. An
example offset can be seen in Figure 3.8, where the red path is the initially drawn and
the dark green path is the offset path.

As already mentioned the polyline consists of several coordinates and each coordinate is
positioned on a corner. This means - on places where the polyline changes its direction.
The algorithm goes through all the coordinates of the polyline and takes always a pair of
consecutive coordinates. It calculates the displacement (offset) for that pair according
to the normal vector. In most cases, both start and end coordinate from each line need
to be offset. The end coordinate is a start coordinate of the next line, which means
that each coordinate will be offset twice, but in different directions depending on the
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Figure 3.8: Example showing the offset of paths that go through the same part of the
road. The red path is the original one, and the dark green path is the offset path.

normal vector. However, sometimes only the start coordinate of the line is being offset.
Which coordinates should be offset depends on the angle that is formed up between
two consecutive lines. This angle determines the magnitude of change in the particular
direction. Both start and end coordinates from a line need to be offset if the inner angle
between the current and the consecutive line is smaller than a particular value. The
reason is that, depending on the angle, each of the two lines will have a normal vector in
different directions and to have the corner coordinate displaced correctly, it should be
offset twice in the directions of both normal vectors. The chosen value is set to be 170◦,
because two consecutive lines with angles between 171◦and 180◦look almost as a straight
line.

(a) Wrong offset - offsetting and
drawing only the start coordi-
nate of each line. Magenta -
original polyline, cyan - offset
polyline.

(b) Correct offset - offsetting
and drawing both start and
end coordinates of each line.
Cyan - original polyline, dark
green - offset polyline.

Figure 3.9: Offseting coordinates at the outer side of the angle between the original lines.

Furthermore, two cases need to be examined depending on in which direction the line
is offset. The first case happens when the new lines must be offset to the outer side of
the original lines - to the side with the outer angle. A simple way to create an accurate
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(a) Wrong offset - offsetting
and drawing only the start co-
ordinate of each line. Red -
original polyline, green - offset
polyline.

(b) Wrong offset - offsetting
and drawing both start and
end coordinates of each line.
Yellow - original polyline, or-
ange - offset polyline.

(c) Correct offset - offsetting
both start and end coordinates
and drawing only their inter-
section point. Yellow - original
polyline, brown - offset poly-
line.

Figure 3.10: Offseting coordinates at the inner side of the angle between the original
lines.

representation is to just offset the end coordinate of the first line and the start coordinate
of the second line. This way, in the result there would be a further line looking like as
if the corner is offset and cut so that two distant corners show up. If only the start
coordinate is offset, the line would look incorrect. Figure 3.9 represents the case for outer
offsets. The second case is a bit more complicated since it requires further calculations.
This is the case when the angle between two lines is less than 170◦and the new polyline
should be positioned in the inner side of that angle. If both end and start point of the
first and second line are offset, the result would look like on Figure 3.10b. However, what
can also be observed is that the new lines intersect each other at a specific point. So,
in this case, this intersection point should be calculated, and only it will be drawn on
the map. Figure 3.10 represents the offset at the inner part of the line and the different
possibilities depending on which coordinates are being offset.

Intersection Minimization Algorithm

After defining the way in which the paths are being offset, the next algorithm, which
is crucial for representing the paths visually, should be described. This is again an
optimization algorithm. It aims to reduce the overlaps and intersections between the
different paths. The following algorithm is a greedy algorithm. Its purpose is to try to
find a globally optimal solution by finding an optimal solution only locally at each step.

Each path between two attractions has a different color so that it is easier to identify it.
Initially, each path between two attractions is drawn at the original coordinates - in the
middle of the road - in case there is no other path already going through that path fully
or partially. If there is already another path, the coordinates that would overlap with
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it should be offset. For this part of the polyline, the algorithm calculates two possible
offsets – one on the left side and one on the right side. It checks then which side returned
fewer intersections of the current polyline with the previously drawn one. It draws it with
offset at the side with fewer intersections. Already drawn paths, however, should not be
changed after drawn once, no matter if there is another more optimal global solution
when changing their offset. Only the paths that are about to be drawn should be offset
so that they minimize the overlaps. This is why the algorithm is greedy.

The algorithm stores for each line (edge) consisting of two consecutive coordinates how
many paths are already going through it and how are they positioned. It does not matter
how many paths go through a particular part of the map. If a new path should also go
through that part, the algorithm always first checks the two possible offsets - on the left
and the right side of all already existing paths at the current position. It always chooses
to offset the new polyline to the side with fewer intersections. The value for the offset
depends on how many paths are already offset in the specific direction at the current
path segment. A path segment is considered to be a single line from the polyline. The
first polyline that is positioned in the middle is without offset. If the next one is offset to
the right the value for the offset is 0.00001, and if the following polyline should also be
offset to the right at this part of the path the value would be double – 0.00002. So the
value always grows according to the number of polylines offset in the particular direction.
The algorithm responsible for offsetting paths and minimizing the intersections is called
the Intersection Minimization Algorithm (Algorithm 3.3).

However, a great deal of attention must be paid when dealing with the vectors’ direction.
The direction in which the path is visited is important and plays a significant role when
storing the order in which the paths are offset. The map of the application is never
rotated, and thus its position stays the same. When looking at it, the entrance is always
located above all other attractions. Bearing that in mind, the right side of the map will
always correspond to the right side of the visitor if he/she goes from the bottom to the
top. When the user goes in the opposite direction, however, the right side of the map
would mean the left side of the visitor. This is very important for the calculations. The
offset for each line segment is stored twice in both directions but with swapped values.
For example, if a line traversed from bottom to top has two lines offset to the left and 1
to the right, the offsets will be stored once like this and once in the opposite direction –
from top to bottom with 1 line on the left and two lines on the right. Figure 3.11 gives
different examples of visualization using the Intersection Minimization Algorithm.

3.5.2 Visual Components Assisting the Users

Despite the visualization of paths, there are some further components that assist the user
in finding attractions easier and faster. As first, to emphasize which attractions have
been chosen by the user and to be able to distinguish them better from the others, the
buildings of all chosen attractions are being colored differently. Furthermore, next to
each building of an attraction a circle with a number is displayed, showing the order in
which each attraction has to be visited. On the left top corner of the screen of the map,
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(a) (b)

(c) (d)

Figure 3.11: Different visualizations of paths between attractions using the algorithms
for paths’ offset and reduction of overlaps.
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Algorithm 3.3: Intersection Minimization Algorithm
Input : A polyline p defined by a list of vertices lpoly to be offset to the left or

right side. The number of lines lleft, offset on the left side and lright,
offset on the right side of the current edge {vi, vi+1}.

Output : The needed offset in the specific direction
1 currentOffset← 0.00001;
2 offsetDirection← null;
3 leftIntersections← checkLeftIntersections() - calculates all intersections of p

on the left side ;
4 rightIntersections← checkRightIntersections() - calculates all intersections of p

on the right side ;
5 if leftIntersection <= rightIntersections then
6 offsetDirection← left;
7 else
8 offsetDirection← right;
9 end

10 for All {vi, vi+1} in lpoly do
11 if offsetDirection == left then
12 currentOffset← currentOffset · lleft;
13 else if offsetDirection == right then
14 currentOffset← currentOffset · lright;
15 end
16 Offset {vi, vi+1} with the currentOffset in the offsetDirection;
17 end

there is a representation of the time needed to visit all chosen attractions marked with
“Total: ”. Underneath there is also a field with the text “Current: ”. Its purpose will be
explained in the next section since it is part of the user interaction.

3.6 User Interface and Interaction
The interaction with the application is an essential part and will be described in details
in this section. As it can be seen in Figure 3.1, representing the workflow of OptiRoute,
the calculations require some input information. When starting the application, the user
first needs to pick a date on which he/she wants to visit Tokyo Disneyland and then click
"Confirm". The next required information is the attractions that the user wants to visit.
He/She can choose up to 15 attractions, and the selected attractions are highlighted with
a black frame around the image. Furthermore, on the bottom of the screen, the user
sees the number of chosen attractions. When he/she is ready with the selection, he/she
can proceed to the next screen clicking on the button "Show Path". After clicking that
the Route Optimization Algorithm starts its calculations and the results are used for the
Intersection Minimization Algorithm. As next, the computations of both algorithms are
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Figure 3.12: The animation between two attractions and the photos of the two attractions,
as well as the landmarks.

represented visually on the map. The route always starts and ends at the entrance and
all the paths have different colors.

The circles with numbers represent the order in which the attractions need to be visited.
These circles are clickable. When the user clicks on one of these, the path from the
previous to this attraction is showed with an animation. The animation is a marker
moving on the road between the two attractions. Because the coordinates taken from the
OSM are only positioned on corners, the distances between two consecutive coordinates
vary a lot. Running a linear animation will lead to a very irregular movement of the
marker so that it will move faster on lines with a longer distance than on short. This is
because the animation tries to run the distance between attractions always for the same
amount of time. To overwhelm that problem further coordinates had to be added between
every two coordinates so that the distance between any two consecutive coordinates is
exactly 1 meter. This was achieved by interpolating each line with the needed amount of
steps so that each new line gets a distance of 1 meter. This resulted in animation with a
constant and smooth movement of the path between any two attractions.

Moreover, photos above the building of both attractions pop out and if the user clicks
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on the photo, it gets bigger, so that it is easier distinguishable. In addition, different
landmarks like coffees, restaurants, shops that are close to the path between the two
attractions, are marked (Figure 3.12). If the user clicks on them a name and a photo of
the current landmark is being displayed. As already mentioned in the last subsection on
the top left corner there is further information about the time needed to visit the whole
route. Not only the total time is displayed, but also the current, marked with "Current".
If the user clicks on a circle with a number, the minutes needed for the transportation
from the last to the selected attraction are being displayed after "Current:". All these
possible interactions with the application give the user more freedom and assist him/her
in the coordination and easier finding of paths.

Here is a list of the possible interactions a user can do:

Interactions for selecting input parameters

• Define the date on which he/she wants to visit Tokyo Disneyland.

• Selected up to fifteen attractions to visit.

Interactions during the visualization

• Move the map and zoom in and out with the two buttons at the bottom corner of
the screen.

• Click on the numbers in the black circles on the map and this way display the
animated route, leading to the selected attractions, as well as images of the
attractions and positions of landmarks near to the animated route.

• Click on the images of attractions to scale them up and see them more clear and
click twice to scale them down.

• Click on the landmark positions to display an image and the name of the current
landmark.
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Implementation

The current prototype of the framework is implemented on Android using Java. It is
developed tested and executed on a PC, which features a Nvidia GTX 1050 TI GPU,
an Intel Core i7-7700HQ CPU 2.80GHz, 16 GB RAM and a 256GB SSD. Android was
chosen as a platform since the idea is to use the technique on the mobile device when
the user is in Tokyo Disneyland. In order to implement the application, a lot of external
libraries as well as various data are necessary.

The waiting times used for the optimization algorithm were stored in JSON files. In
order to process, read and write such type of files and work with them in Java the
external library JSON.simple is integrated into the project. Open Street Map (OSM) is
used for the map representation, because in comparison to Google Maps, the different
components of the map like buildings, green areas, roads, etc. are distinguished easier.
The coordinates and map information necessary for the computations are obtained from
the OSM database. The map data for the area of Tokyo Disneyland is stored in a file
with the extension .osm. So that it is possible to read and use the information from
a .osm-file, an additional library is used. The library has a simple, but sufficient for
the purpose functionality and is called BasicOSMParser. It allows the extraction of the
information from a .osm-file to several .csv-files containing different information about
the coordinates on the map.

For the visual representation, two main libraries come in help. The Osmdroid library,
which is an android library that provides different tools and views that make the
interaction with OpenStreetMap-Data possible. All visualizations of paths and the outline
of the buildings, as well as marking points on the map, are possible with this library. For
some of the more complex representations, the additional library Osmbonuspack is used.

To deal with the computations regarding the coordinates, two external libraries are also
integrated into the project. The first one is geodesy. It is used to calculate the real
distance between two coordinates on Earth since it is crucial to have an accurate pairwise
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distances computation between the attractions. For the interpolation of lines, used for
the animation of paths, the library GeographicLib is imported and used in the project.
It can find each coordinate lying between two coordinates only by specifying the distance
from the coordinates. The distance is represented as a fraction, which means a portion
of the whole line. For example, 1

2 or 1
3 of the line.

4.1 Installation and Running of OptiRoute
The OptiRoute application uses the open-source build automation system Gradle, which
automatically creates all the dependencies with external libraries and tools. All the listed
libraries in the previous section should be imported in the "build.gradle". All external
files and data are incorporated into the project and are attached to the application. In
case they have to be changed or extended, they are positioned in the "raw" folder which
can be found in the resources of the android project. These are the two main aspects that
are important to be able to install the application. To run it, simply the "app"-folder
must be executed and the desired mobile device selected, which can be an emulator or a
real smartphone. The source code of the project can be found on GitHub [Vas].
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CHAPTER 5
Results and Discussion

This chapter presents the results of this thesis and demonstrates if they cover the
expectations and goals set at the beginning of the project. The chapter is split into
three parts. While the focus of the first part lies on evaluating the Route Optimization
Algorithm, the second part examines the Intersection Minimization Algorithm. The third
part is about the limitations of the developed technique, as well as a discussion on its
performance.

5.1 Route Optimization Algorithm
Having all set tasks finished, the application for Tokyo Disneyland is capable of optimizing
the route of a set of selected attractions, as well as visualizing this route most conveniently.
This section aims to examine the effectiveness of the Route Optimization Algorithm by
testing its running time and the quality of the results it returns. Since the presented
problem is an NP-hard problem, with a growing number of attractions, the time needed
for computation grows rapidly. To be exact, the algorithm runs in a factorial time
when solving the problem with a brute-force search. As was already mentioned, it was
determined that for up to 9 attractions the algorithm can calculate the most optimal
solution using a brute-force search. However, of fundamental interest is to test the
results returned for 10 to 15 attractions, where several constraints were implemented to
reduce the time for computation. Table 5.1 represents the calculation time of the NT -
algorithm for a different number of attractions using the brute-force search. The time
was determined by executing tests with the different numbers of attractions, but it was
tested with maximal 14 attractions. Dependency and a relation between the number of
attractions and the computation time were discovered during the tests. This relation is
described by Equation 5.1.

Tn = n · Tn−1 (5.1)
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Number of Attractions Computation time
8 ≈ 0 sec.
9 ≈ 0 sec.
10 ≈ 3 sec.
11 ≈ 33 sec.
12 ≈ 6,6 min.
13 ≈ 1,43 h.
14 ≈ 20,02 h.
15 ≈ 12,51 d.

Table 5.1: Computation time using a brute-force search to find the most optimal route
order for a fixed number of attractions.

Tn represents the computation time for a set of n attractions and Tn−1 is the computation
time of n-1 attractions. Based on that equation it was concluded that for 15 attractions
the computation time would take around 12,5 days to find the most optimal solution
using a brute-force search. However, the goal of the application is to be used in real-time.
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In order to analyze the effectiveness of the current approach, the result of the algorithm
is compared to the result of a randomly chosen order of a set of attractions. To be
more concrete a set of attractions are tested with the Route Optimization Algorithm
and the resulted overall time for visiting these attractions is stored. For the same set of
attractions, a hundred of possible permutations are taken randomly and the overall time
for each permutation is stored. As next, the minimum, the average and the maximum
time of these hundred results are computed.
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The test is executed with the maximum possible attractions a user can choose – 15 since
this is the most complicated case and most edges are being removed. The algorithm is
tested for ten different sets, each containing 15 attractions, which are chosen randomly.
Furthermore, the test is conducted for two different dates – a date on which the traffic of
people is average and a date on which usually the park is very crowded. The idea is to
examine the behavior of the algorithm under different circumstances. Table 5.2 and Table
5.3 represent the results of the tests. The column called "Route Optimization Algorithm"
represents the time needed to visit all attractions by using the Route Optimization
Algorithm already described in this thesis. The three other columns (named "Random
Order") represent the results from the hundred different permutations of the same set
of attractions by computing the overall time for each one of them. The first column
stays for the minimum overall time from the sets, the middle shows the average times,
and the third one represents the maximum overall time from the sets. The most crucial
value of the three values is the average time. Comparing the overall time of the Route
Optimization Algorithm and the average time from the random order of attractions, it can
be observed that the algorithm has a significantly better time. In most cases, the user
can save between 100 and 150 minutes if he/she uses this technique instead of choosing
him-/herself how to visit the attractions.

Interestingly, the algorithm also performs better than the minimum time among those 100
tests. When the permutations of the same sets of attractions are increased to 1000 or 10
000, the average time stays almost the same with a small amplitude of change: +- 5 min.
The minimum time, however, may get less with an increased number of tests, since the
probability of getting the optimal solution among the tested permutations of attractions
increases. Nevertheless, the average time is most important for evaluating the algorithm.
Moreover, the Route Optimization Algorithm makes it possible to be able to visit 15
attractions. There are days with huge crowds so that the queues in front of attractions
are just unimaginably long. On such days without a strict plan, it would be impossible
to visit all 15 attractions. Table 5.3 can confirm this statement. The maximum time for
visiting attractions is around 14 hours, which makes 840 minutes. The date 15.08.2018 is
a date with many visitors in Tokyo Disneyland. For this reason, the overall times for all
sets of attractions is much longer than the times on 30.04.2018. The table shows that
there are two sets with a maximum overall time more than 840 minutes. This means
the user will not be able to visit all 15 attractions on that date. However, having the
same set of attractions, but calculating their order with the optimization algorithm, the
times are reduced to under 840 min. So the algorithm also makes it possible to visit
more attractions, especially on very busy days.

Despite evaluating the Route Optimization Algorithm with a randomly chosen different
routes of a set of attractions, it is of great importance to compare it with the most
optimal solution. However, as it can be seen in Table 5.1, the computation time for 15
attractions is expected to last around 12 days and a half for a single set. Therefore, to
be able to make a conclusion about the effectiveness of the algorithm, it needs to be
tested with at least five different sets, which would take in total more than two months to
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Set Route Optimization Random Order Random Order Random Order
Number Algorithm (min) (average) (max)

1 383 442 513 597
2 347 414 472 545
3 368 408 491 550
4 428 488 537 611
5 424 471 554 632
6 376 438 502 609
7 363 404 472 575
8 453 484 537 599
9 499 541 602 671
10 381 423 481 563

Table 5.2: Comparison of the overall time [in minutes] for visiting 10 different sets of
attractions on 30.04.2018, calculated with the Route Optimization Algorithm and with
100 different random orders of each set.

Set Route Optimization Random order Random order Random order
Number Algorithm (min) (average) (max)

1 580 679 751 820
2 530 592 673 740
3 565 610 689 769
4 608 632 729 799
5 652 700 795 853
6 568 633 712 791
7 503 550 623 687
8 656 676 750 812
9 744 791 863 921
10 535 603 674 764

Table 5.3: Comparison of the overall time [in minutes] for visiting 10 different sets of
attractions on 15.08.2018, calculated with the Route Optimization Algorithm and with
100 different random orders of each set.

compute. A more reasonable experiment could be conducted with sets of 14 attractions
since the calculation time is much shorter, but the complexity is still high. The results
of that experiment are displayed on Table 5.4. The difference between the result of
the Route Optimization Algorithm and the optimal solution varies between 11 and 22
minutes for the tested five sets. Having these results, it can be concluded, that the Route
Optimization Algorithm appears to be quite effective. It must be stated that 22 minutes
is not much time, bearing in mind the fact that the algorithm runs for only a couple of
seconds in comparison with 20 hours for the most optimal solution.
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Set Number Route Optimization Algorithm Optimal Solution Difference
1 437 415 22
2 356 343 13
3 411 400 11
4 465 450 15
5 333 322 11

Table 5.4: Comparison of the overall time [in minutes] for visiting 5 different sets of 14
attractions calculated with the Route Optimization Algorithm and the optimal solution.
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The results from the experiments demonstrate that the Route Optimization Algorithm
is rather effective in finding a solution pretty close to the most optimal one. Moreover,
it performs much better than randomly selected attractions by being able to save the
visitors up to 2 hours and a half. However, the findings for the comparison of the Route
Optimization Algorithm and the most optimal solution are based on a limited number
of tested sets of attractions. This is because the computation time for finding the most
optimal solution takes too much time. The results from such analyses should, therefore,
be treated with considerable caution.

5.2 Intersections Minimization Algorithm

Having evaluated the Route Optimization Algorithm, the purpose of this section is
to evaluate the Intersection Minimization Algorithm of the different paths between
attractions. On Figure 3.7 the paths are displayed without displacement and without
minimizing the overlaps and intersections. The different examples on Figure 3.8 on the
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other hand shows the paths with an offset and with reduced intersections. The aim here
is to compare both types of visualization and determine if and to what extent the users
find the offset visualization better and easier.

The evaluation is conducted in a form of an interview. Six different participants at different
ages and with a different level of background knowledge in the topic are interviewed.
They are first asked to choose from the list of attractions 15 of them that they would
like to visit, as well as the day of the visit. After that, the Route Optimization Algorithm
calculates the most optimal route of the set of attractions. The result is visualized first
without using the offset and intersection minimization algorithm. Afterward, the same
set of attractions is visualized using that algorithm. Both visualizations are showed to
each participant, and a couple of questions are asked about them.

The questions are the following:

1. What would you say about both visualizations?

2. Which visualization do you prefer and find easier to follow and why?

3. Can you think of a more sophisticated and intuitive way to visualize the routes? If
yes, what is it?

4. Do you think the animation, as well as the images of the attractions and landmarks,
are helpful when clicking on a specific attraction number?

5. Would you use the OptiRoute Application if you are about to visit Tokyo Disneyland
or you prefer to make the plan and route yourself?

The results of the interviews of all participants are quite similar for most of the questions.
However, there are minor differences. The first question gave the participants the
opportunity to express their opinion about both visualizations as a whole. They all found
the second visualization more understandable. However, some of them said that both of
them are good and helpful since the user can see the whole route in both visualizations.
The second question suggested a more concrete answer expecting the participants to
choose the visualization they would prefer to use. All of them were categorical that the
visualization using the Intersection Minimization Algorithm is much better and easier to
follow since all routes are visible and have fewer intersections and overlaps. Half of the
participants could not suggest a more intuitive way to visualize the routes. The rest gave
some ideas about displaying the route only between any two attractions when the user
clicks on the desired attraction. Another suggestion was to add arrows to the routes so
that even when zoomed in the user knows the walking direction. Furthermore, one of the
participants suggested that it would be more intuitive if the map is being rotated so that
the visitor can easily orientate.

All participants find the animation helpful since it highlights the current route. They
also find the images of attractions very useful, since the user knows this way how the
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attraction should look like in reality and find it easily. Also, the landmarks are regarded
as useful by the participants, because they believe they will lead them the way and even
give them suggestions for a restaurant or a shop they would like to visit after the tour.
Finally, all participants were asked if they would use the application if they were about
to visit Tokyo Disneyland. They all prefer using the OptiRoute application instead of
creating the plan themselves. They believe this would save them much time and will
guide them through the park, as well as it will give them a preliminary overview of the
whole route and the total time needed for visiting.

5.3 Limitations and Performance
One of the main limitations of the current project is the fact that there is a limited
amount of attractions that the user can choose. For example, on not so busy days the
queues and waiting times are not so long so that it is possible to visit more than 15
attractions, which the application does not allow. Furthermore, the user is limited in
his/her choice. This is because no time for resting is considered in the application. Also,
the average walking speed of the visitors is set to be constant, which in reality varies
depending on the visitor and his physical state.

The performance of the computation in the application depends mainly on the storage
of the external data that is needed for the algorithms. Initially, for every single loop or
calculation, the data was read from the external time. This cost, however, much time so
that only up to 6 attractions could be calculated with all permutations in less than 10
seconds. Consequently, all the external data was stored in different data structures in the
beginning. This increased the performance drastically and made it possible to traverse
all permutations for up to 9 attractions.
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CHAPTER 6
Conclusion and Future Work

6.1 Conclusion
In this bachelor thesis, different algorithms for solving the problem with the waiting times
in amusement parks were introduced. In the first part of the thesis, several algorithms
optimizing the route plan strategy were presented. Together they form the so-called
Route Optimization Algorithm. The algorithm takes a set of selected attractions and the
date of visit as input and transforms the selected attractions into a route with a specific
order. The resulted route is calculated in real-time, taking not more than 5 seconds, no
matter the number of attractions and optimizes the total time for visiting the selected
attractions. Therefore, the project fulfilled all the goals set in the beginning, regarding
the route optimization algorithm and even performs better than expected. The trade-off
between the computational time and the resulted route is as good as possible regarding
the goals set at the start of the project.

The second central part of the thesis is the visual representation of the routes. This
visual representation has to happen in real-time and display the routes, depending on
the user’s choice and the results from the Route Optimization Algorithm. The routes
should be displayed in a simple, but appropriate and easily readable way. Consequently,
it was decided that the most convenient representation, in this case, would be similar
to the metro-map layout style, which contains paths with a particular offset and with a
reduced amount of intersections between them. The presented Intersection Minimization
Algorithm, responsible for the offsets and the intersections minimization using a greedy
algorithm, brought to good visual results, which also fulfilled the goals set in the second
contribution of the thesis. The path animation and the attractions’ images and the
landmarks are just additional extensions that support and assist the users in finding
their way easier and faster.

Both algorithms together are well compatible, by providing the most help and assistance
to the visitors. Together they are offering the users not only a route plan strategy but
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also a dynamical visual representation. This way, the future visitors can significantly
reduce the time needed not only for pre-planning but also for the duration of the visit
itself, by being able to enjoy such amusement parks and what they have to offer to the
maximum.

6.2 Future Work
The current project can be improved and developed and serve as a basis for future works.
Some of the improvements that could be integrated are to overwhelm the limitations
and remove some of the preliminaries and assumptions set in the beginning. These
assumptions make it clear what information and preconditions build the basis of the
technique. They make things simpler, because otherwise, the complexity would go beyond
the scope of this thesis, which is already complex enough.

However, removing them will increase the flexibility and the features of the application.
For example, additional time could be considered for having rest or a lunch, such as
setting a fixed time the visitor would like to rest. Furthermore, instead of having a
constant walking speed for everyone, a varying walking speed can be implemented by
selecting at the beginning of the application the type of visitor (a pregnant woman, a
person walking very fast, a slow walking person, etc.). Despite these improvements,
also a starting time for visiting the attractions can be considered so that the visitors
can have more flexibility in choosing at what time of the day they would like to visit
Tokyo Disneyland. Also, some of the suggestions from the participants in the qualitative
evaluation can be used as an idea for further development of the techniques.

The basic approach used in OptiRoute can be integrated into many other similar issues,
where the problem with the queues and waiting times occurs. Consequently, OptiRoute
could be improved in many ways in future works and thus help users avoid waiting in
long queues and save much time.
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